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LETTER TO THE EDITOR 

Equivalent isotropic Osp(212) spin chains and its Bethe 
ansatz analysis 

M J Martins and P B Ramos 
Universidade Federal de S%o Carlos, Depanamento de Fisica. CP 676, 13560 SZo Carlos, Brazil 

Received 4 July 1995 

Abstract. In this paper we discuss the equivalence between two integrable and isotropic 
Osp(212) chains via the braid-monoid approach. We use the analytical Bethe, ansatz approach 
in order to solve the spec" of these systems. The ground state is parametrized by a special 
suucture of the Bethe ansatz mo\. Their interpretation in terms of correlated fermionic models 
is briefly discussed. 

It is known that the solution of the Yang-Baxter equation plays an important role in the 
construction of exactly integrable models [l]. Recently, a new rational solution of the Yang- 
Baxter equation invariant under the spl(211) superalgebra has been found in the literature 
[ 2 4 .  The mean feature of this solution is the presence of an additional non-additive 
parameter and its explicit invariance under the U ( 1 )  symmetry. On the other hand, it is 
known that a rational Osp(212) invariant solution can also be constructed by using many 
different approaches [5-8]. Due to the isomorphism spZ(211) - Osp(212), it is reasonable 
to think that these two solutions might be connected, for certain particular values of the extra 
parameter appearing in the spl(211) solution. One possible way to verify such a relation is 
to test whether or not such rational R-matrices share common algebraic structures, such as 
the braid-monoid algebra [9]. The basic problem here is that we checked that the standard 
Osp(212) monoid [8] does not preserve the U(1) invariance. Thus, from the point of 
vjew of Boltzmann weights, such a connection is not established in a trivial way. The 
first purpose of this work is to clarify this issue, by showing that the rational spl(ZI1) 
solution at its fundamental four-dimensional representation [lo] can be written in terms of 
the braid-monoid scheme. We then take advantage of the U(1) and crossing properties 
of the braid-monoid approach in order to solve the associated Osp(212) spin chain by the 
analytical Bethe ansatz approach. We found that the ground state is determined by a peculiar 
shing structure of the Bethe ansatz mots. We also discuss their connection with models of 
correlated fermions [4,11-141. 

We start our discussion by recalling the basic properties of the braid-monoid structure 
appearing in graded rational R-matrices (see e.g. [S. 151). The braid Pi is chosen to be 
the graded permutation operator (P,"):: = (-~)p(o)p(b)&d&,c. where p ( a )  is the Grassmann 
parity. The monoid Ej is a Temperley-Lieb operator [16] satisfying the following extra 
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(braid-monoid) relations [9]t: 

E; E,+] E; = Ei E: = t E; 
Pg ,*I PgE. , 1+1 - - E.P! I ,*I Pg I = EiEiil (1) 

where the constant r assumes the values r = &$. For the Osp(212) system the parameter .$ 
is zero, t = 0 [8]. In this case the 'Baxterized ' form [8, 151 of this braid-monoid algebra 
has the following expression: 

(2) 

Moreover, in order to search for solutions of the braid-monoid structure (1) we set the 

EiPi8+.Ei=tE; P:E;=EiP:=tE;  

h 
(R@)I.~):$ = h8neJbd f ( p 8 ) f $  - = ( E l . d f $ .  

following ansatz for the monoid Ei [SI 

where f f o b  are the elements of a invertible matrix and the symbol st stands for the 
supertranspose operation. The typical matrix 01 leading the monoid (3) to satisfy the 
properties (1) is that appearing on the definition of the Osp(212) invariant elements, namely 

(E;):: = ffabff:: (3) 

(bbff  grading) (see e.g. 18, 71) 
/ 1  0 0 o \  

(0 0 -1 0) 
As it has been mentioned above, we have found out that such a solution breaks the 

U(1) invariance of the monoid (3) explicitly. However, by imposing the U(1) symmetry, 
we are then able to find an extra solution which, in the bbff grading, is written as follows: 

/ o  -1  0 o \  

( 0  0 1 0 )  
Now we can directly verify that the second solution 012 is equivalent to the spi(211) 

solution of 13, 41 for the special value of the extra non-additive parameter. For instance, in 
[3] this parameter is denoted by b and one has to take the limit b + 08. More precisely, 
considering the appendix of [3], we are able to establish the following identity: 

where the matrix elements &b are 
/ o  0 0 1 \  

\ 1  0 0 0) 
To complete the verification, one has to set A = 2u and check that the matrix 012 is 

related with & by just changing the grading bbff to f b b f .  Next some important comments 
are in order. 

It turns out that solutions 011 and 012 lead us to distinct vertex modelsll. In fact, from 
t For a genenlization of multi-colour vasions see. far example. [17]. 
$ It is possible to show that the sign of r changes according specific choice of gnding. 
5 In the case of [41 one has to take (carefully) the limit (I + -;. 
I1 Indeed one can check UIY the two matrices nl and (11 are not wnnened by a unitary transformation. 
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(2)+), we notice that the first model possesses 38 non-null Boltzmann weights while that 
defined by a2 has only 36 vertices. Besides that, it is evident that they also possess some 
vertices with different functional behaviour. However, one would expect that common 
features may appear in a structure involving only the braid-monoid operators. For instance, 
this is the case of the two-body Hamiltonian defined as the derivative of the R-matrix at 
A = 0. In general, the Hamiltonian on a lattice of L sites is given by 

In fact, we have verified by numerical diagonalization of (8) (for several values of 
L, including odd values) that these two Hamiltonians share the same spectrum. This 
information is extremely useful in order to choose a more symmetrical system (Hz) to 
perform exact calculations such as the Bethe ansatz analysis. Thus, let us turn to the 
problem of the diagonalization of Hz. First of all, it is possible to show that this model is 
obtained as the logarithmic derivative of the following transfer matrix: 

(9) 
where the index 0 denotes the 4 x 4 .auxiliary space and the operator L(A)$ = 
(-l)+'(a)p(b)R(A)g. If we choose the particular fbbf grading, we find that following 
expression for &(A): 

T(A) = TroI.CoL(A).. .&I @)I 

41 + d U e 4 2  n(A)w W e 1 1  + P Q h  
+Ab22 + 331 

e12 -&.)ex 

e13 + o(A)e24 W e 2 3  

ezl - u(A)ea2 

A h  + e 4 1  

+a(A)ez + W e 3 3  ] (10) 
s o h 2  e42 - u(Ne31 

e43 - u(a)ezl 

pWe11 + W e u  
+*[en +e331 

1Ieu + e 4  I n(Ak14 e y  - u ( A h  e x  + a U ) e 1 2  

+ W e 2 2  + 
C(A) = 

where the matrix elements of (e&)ed = && and the functions appearing in (IO) are given 
by 

1 1 
1 + A  n(U 

[(A) = I - A  n(A) = - S(A) b ( A )  a(A) =-- 

s(A) = (1 f ZA)n(A) p(A) =. 

In order to apply the analytical Bethe ansatz we first notice that the action of the operator 
L(A) in the usual ferromagnetic reference state has a triangular form, namely, 

Taking into account this structure, the analytical Bethe ansatz approach (see e.g. [18]) 
now seeks for a more general ansatz for the eigenvalues of T(A) as 
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where the rational functions A(x) ,  Bj (x)  and C(x) can be fixed by exploiting crossing 
symmetryt, unitarity condition and the asymptotic behaviour of the operator L(A). We then 
have found the following relations: 

A(-1 - x )  = C ( X )  Bi(-l -x) &(X)  A(x)A(-x) = 1 .  (14) 
Considering the 'minimal' pole assumption [18] (and our previous experience with 

Osp(ll2n) systems [ZO]) we start with the ansatz A(x) = :%. Now, by using properties 
(12) and by looking for a common pole structure in the fbbf grading for A(A; Aj,  A;), we 
are able to find the following solution: 

where for later convenience the scaling A + i l  has been used. Finally, the set of numbers 
(A:, A;] are fixed by imposing that the eigenvalues A(A, A:, A;) have no pole at finite value 
of A. This leads to the following Bethe ansatz condition: 

and the eigenenergies of Hamiltonian (8) are parametrized by 

Such results are almost in accordance to that obtained previously in [3], if one considers 
the special rational case and the limit b + 0 (a fundamental four-dimensional representation 
of slp(211)) in Maassarini's results. In particular, our analytical result for the eigenvalue 
A& A:, A:) gives further support to the conjecture made in [3] concerning its general 
structure for the spl(211) model. The basic difference is the presence of an extra factor 
-(-l)L in our equations (13) and (16). We believe that its origin is a consequence of 
the fact that we have not used the supertensor formalism of 131. We find that this factor is 
crucial in order to fit the ground-state properly of the Hamiltonian (8). We have verified this 
fact (even for odd lattices) by numerically solving the Bethe ansatz equations (16), (17) and 
have compared them with the exact diagonalization of Hamiltonian (8) for several values of 
L. Remarkably enough, this analysis leads us to find that the roots (A;, A;] governing the 
ground state have a special string behaviour. This is shown in table 1 for some intermediate 
zeros and several values of L. Our numerical results suggest the following stlucture of 
solution for the ground state: 

A! = E, f i + ~ ( e - " ~ )  = A; = c, (18) 

where a > 0 and j = 1, . . . , [LIZ]$. In the thermodynamic limit, L 4 00, the roots {A;} are 
believed to cluster around 33. In this case the second Bethe ansatz equation is automatically 

t In our case the crossing properry acts as Rim)  = ((12 Q I ) R Y ( - l  -A)(.% 0 I)"! 
$ [LIZ] is the integer pan of LIZ. 
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Table 1. Some intermediate (middle of the chain) zems corresponding to the ground-state 
structure of (16). 

L Im[All ReIA'1 A' 

16 0.97166 0.28074 0.28236 
20 0.97307 0.37949 0.38179 
24 0.98395 0.28075 0.28140 
28 0.98395 0.34414 0.34484 
32 0.98856 0.32731 0.32770 

satisfied. This situation resembles those appearing in the supersymmetric T - J model [21], 
and some care has to be taken to perform the limit in the first equation (16). We recall, 
however, that our case is a bit more involved since the roots cluster around 45. Considering 
previous experience with the f - J model [21] and our string structure (18) we find the 
following final form for the Bethe ansatz (governing the ground state): 

LIZ 

i#k 
-(-l)LeiLt(Sd = n ,i4(ErFd (19) 

where +(x) = 2[arctan(h/3) - arctan(2x)l and @(x) = 2arctan(x/2). Thus, the final 
effect of the ansatz (18) is that we end up with a scattering between particles with pseudo- 
momentum +(<) and phase-shift e'+($) around a ring of size L. Strictly in the thermodynamic 
h i t ,  equation (19) goes to a integral equation for the density p ( 5 )  

+m 

+'O) + 2 w ( < )  = / @'(e - u)p(u)du (20) 
-m 

where the prime symbol stands for the derivative. Such an integral equation is then solved 
by elementary Fourier techniques, and we find the following simple result: 

1 
= cosh(ir<) 

and the ground-state energy per particle e, is given by 
m 

e ,  = [, p(<)@'(() d( - 1 = -4 ln(2) + 1 . (22) 

In order to conclude this paper we would like to remark on the possible interpretation 
of Hamiltonian (8) in terms of strongly correlated electronic systems [4,11-14]. Recently, 
new generalizations of the Hubbard model containing additional hopping terms have been 
proposed in the context of the rational gl(211) vertex model [4] and a generalization form 
of six-vertex scattering [12-141. We have verified that the two-body term of our second 
Hamiltonian (Hz) corresponds to an analytical continuation in the non-Hermitian region of 
this general Hubbard model [4, 131. In particular, in the notation of [4], our two-body term 
of H2 is seen as the limit U + -2, where U is Hubbard parameter entering in [4]. The 
first Hamiltonian, however, presents some new terms. More precisely, by taking the basis 
of the four electrons states as follows: 

(23) 

(24) 

10) C!,+IO) CJO) t C!.+C!.-lO) 

we find that HI contains the following two extla terms: 
t t u [ c ~ , - ~ c ~ + L ~  + ~ i , - r ~ j + ~ , o ~ [ ~ i . c  + ni+l.a - 7-ni.vni+t.<1 

.7=* 
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and 

bi,+ - ni.-l[ni+l.+ - ni+1.-1 (25) 

where ni, +(ni ,  -) is the number of electlons up (down). Interesting enough, we notice 
the presence of an off-site Coulomb interaction. The price we have paid is the explicit 
breaking (equation (24)) of the U(1) symmetry in order to guarantee integrability. Although 
these two Hamiltonians share the same eigenvalues, they do not necessarily have the same 
eigenfunction. In fact, a numerical analysis reveals that even the ground-state wavefunction 
is, in fact, different in these two models. This means that such systems may present 
different behaviour conceming correlation functions and therefore are related to distinct 
physical behaviour. Conceming physical applications, the main drawback of these models 
is that they are intrinsically non-Hermitian. 

In summary we have discussed equivalent Osp(212) spin chains by the braid-monoid 
approach. We have used the analytical Bethe ansatz approach in order to determine the 
ground-state energy. Motived by these results, additionally we have been able to generalize 
the U(1) monoid construction for all Osp(nl2m) algebra. In this case the U(1) monoid is 
built on an antidiagonal matrix (Y possessing only elements i l .  The integer m is the number 
of minus signs and n = antitrace(or). The first non-trivial case of such generalization is 
in fact the Osp(212) system, since the Osp(ll2n) is automatically U(1) invariant [20]. 
Hopefully, this new construction will be useful in order to find the Bethe ansatz solution 
for the general Osp(nl2m) R-matrices. 

This work is supported by CNPq and FAPESP (MJM) and by Capes (PBR) (Brazilian 
agencies). 
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